tan−16316=sin−1513+cos−135
Given, tan−16316=sin−1513+cos−135
RHS=sin−1513+cos−135
Let sin−1(513)=x⇒sin x=513∵ 1−sin2x=cos2x⇒1−(513)2=cos2x⇒169−25169=cos2x⇒144169=cos2x⇒1213=cos x∴ tan x=sin xcos x⇒tan x=5131213=512⇒x=tan−1512
Let cos−135=y⇒cos y=35∵ 1−cos2y=sin2y⇒1−(35)2=sin2y⇒ 25−925=sin2y⇒1625=sin2y=⇒45=sin y∴ tan y=sin ycos y⇒tan y=4535=43⇒y=tan−143
∴ Given equation becomes tan−16316=x+y⇒tan−16316=tan−1(512)+tan−1(43)∴ RHS=tan−1(512)+tan−1(43)=tan−1[512+431−512×43][∵ tan−1x+tan−1y=tan−1(x+y1−xy)]=tan−1[15+4812×312×3−2012×3]=tan−1[6336×3636−20]=tan−1[6316]=LHS∴ LHS=RHS