wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

tan16316=sin1513+cos135

Open in App
Solution

Given, tan16316=sin1513+cos135
RHS=sin1513+cos135
Let sin1(513)=xsin x=513 1sin2x=cos2x1(513)2=cos2x16925169=cos2x144169=cos2x1213=cos x tan x=sin xcos xtan x=5131213=512x=tan1512


Let cos135=ycos y=35 1cos2y=sin2y1(35)2=sin2y 25925=sin2y1625=sin2y=45=sin y tan y=sin ycos ytan y=4535=43y=tan143
Given equation becomes tan16316=x+ytan16316=tan1(512)+tan1(43) RHS=tan1(512)+tan1(43)=tan1[512+431512×43][ tan1x+tan1y=tan1(x+y1xy)]=tan1[15+4812×312×32012×3]=tan1[6336×363620]=tan1[6316]=LHS LHS=RHS


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon