The correct option is D nn+2
Given that
tan−1(11+2)+tan−1(11+2.3)+.....+tan−1(11+n(n+1))=tan−1θ
tan−1(2−11+(2)(1))+tan−1(3−21+3.2)+....+tan−1((n+1)−n1+n(n+1))=tan−1θ
(tan−12−tan−11)+(tan−13−tan−12)+...+(tan−1(n+1)−tan−1n)=tan−1θ
⇒tan−1(n+1)−tan−11=tan−1θ
⇒tan−1((n+1)−11+(n+1))=tan−1θ
⇒nn+2=θ