wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

tan1(1x1+x)=12tan1x.(x>0)Find x.

Open in App
Solution

We have,

tan1(1x1+x)=12tan1x

Put, x=tanθ then, θ=tan1x

tan1(1tanθ1+tanθ)=12tan1tanθ

tan1⎜ ⎜tanπ4tanθ1+1×tanθ⎟ ⎟=12θ

tan1⎜ ⎜tanπ4tanθ1+tanπ4tanθ⎟ ⎟=12θ

tan1tan(π4θ)=12θ

(π4θ)=12θ

π4θ=12θ

π4=12θ+θ

π4=32θ

3θ=π2

θ=π6

Now, put θ=tan1x

tan1x=π6

x=tanπ6

x=13

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon