We have,
tan−1(1−x1+x)=12tan−1x
Put, x=tanθ then, θ=tan−1x
tan−1(1−tanθ1+tanθ)=12tan−1tanθ
tan−1⎛⎜ ⎜⎝tanπ4−tanθ1+1×tanθ⎞⎟ ⎟⎠=12θ
tan−1⎛⎜ ⎜⎝tanπ4−tanθ1+tanπ4tanθ⎞⎟ ⎟⎠=12θ
tan−1tan(π4−θ)=12θ
(π4−θ)=12θ
π4−θ=12θ
π4=12θ+θ
π4=32θ
3θ=π2
θ=π6
Now, put θ=tan−1x
tan−1x=π6
x=tanπ6
x=1√3
Hence, this is the answer.