tan−1(13)+tan−1(17)+........+tan−1(1n2+n+1)=
tan−1(nn+2)
tan−1(13)+tan−1(17)+........+tan−1(1n2+n+1)tan−1(2−11+2.1)+tan−1(3−21+3.2)+........+tan−1(n−(n−1)1+n(n−1))+tan−1(n+1−n1+n(n+1))=tan−1(2)−tan−1(1)+tan−1(3)−tan−1(2)+..........+tan−1(n)−tan−1(n−1)+tan−1(n+1)+−tan−1(n)=tan−1(n+1)−tan−1(1)=tan−1n+1−11+n+1=tan−1(nn+2)