Byju's Answer
Other
Quantitative Aptitude
Functions
tan -1√a-x/a+...
Question
t
a
n
−
1
√
a
−
x
a
+
x
Open in App
Solution
y
=
t
a
n
−
1
√
a
−
x
a
+
x
L
e
t
x
=
a
c
o
s
θ
θ
=
c
o
s
−
1
(
x
a
)
√
a
−
x
a
+
x
=
√
a
−
a
c
o
s
θ
a
+
a
c
o
s
θ
=
√
1
−
c
o
s
θ
1
+
c
o
s
θ
=
√
s
i
n
2
θ
2
+
c
o
s
2
θ
2
−
c
o
s
2
θ
2
+
s
i
n
2
θ
2
c
o
s
2
θ
2
+
s
i
n
2
θ
2
+
c
o
s
2
θ
2
−
s
i
n
2
θ
2
√
a
−
x
a
+
x
=
√
2
s
i
n
2
θ
2
2
c
o
s
2
θ
2
=
t
a
n
θ
2
∴
y
=
t
a
n
−
1
[
t
a
n
θ
2
]
=
θ
2
∴
y
=
1
2
c
o
s
−
1
(
x
a
)
Suggest Corrections
0
Similar questions
Q.
t
a
n
−
1
√
a
−
x
a
+
x
Q.
The value of
lim
x
→
0
t
a
n
(
a
+
x
)
−
t
a
n
(
a
−
x
)
t
a
n
−
1
(
a
+
x
)
−
t
a
n
−
1
(
a
−
x
)
is equal to
Q.
If
tan
−
1
(
c
o
s
e
c
tan
−
1
x
−
tan
cot
−
1
x
)
=
a
tan
−
1
x
(
x
≠
0
)
.
Find the value of a
Q.
∫
tan
-
1
x
d
x
i
s
e
q
u
a
l
t
o
(
a
)
(
x
+
1
)
tan
-
1
x
-
x
+
C
(
b
)
x
tan
-
1
x
-
x
+
C
(
c
)
x
-
x
tan
-
1
x
+
C
(
d
)
x
-
(
x
+
1
)
tan
-
1
x
+
C
Q.
Write each of the following in the simplest form:
(i)
cot
-
1
a
x
2
-
a
2
,
x
>
a
(ii)
tan
-
1
x
+
1
+
x
2
,
x
∈
R
(iii)
tan
-
1
1
+
x
2
-
x
,
x
∈
R
(iv)
tan
-
1
1
+
x
2
-
1
x
,
x
≠
0
(v)
tan
-
1
1
+
x
2
+
1
x
,
x
≠
0
(vi)
tan
-
1
a
-
x
a
+
x
,
-
a
<
x
<
a
(vii)
tan
-
1
x
a
+
a
2
-
x
2
,
-
a
<
x
<
a
(viii)
sin
-
1
x
+
1
-
x
2
2
,
-
1
<
x
<
1
(ix)
sin
-
1
1
+
x
+
1
-
x
2
,
0
<
x
<
1
(x)
sin
2
tan
-
1
1
-
x
1
+
x
View More
Explore more
Functions
Other Quantitative Aptitude
Solve
Textbooks
Question Papers
Install app