wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(tan1x)2+(cot1x)2=5π. Find the value of x.

Open in App
Solution

Given that

(tan1x)2+(cot1x)2=5π28

We know that,

tan1x+cot1x=π2 .....(1)

Squaring on both sides

(tan1x+cot1x)2=(π2)2

(tan1x)2+(cot1x)2+2(tan1x)(cot1x)=π24 ....(2)

from the given information,

(tan1x)2+(cot1x)2=5π28

Substituting this in (2), we get


5π28+2(tan1x)(cot1x)=π24


2(tan1x)(cot1x)=3π28 ....(3)


We know that (ab)2=(a+b)24ab

Using this formula, we obtain


(tan1xcot1x)2=(tan1x+cot1x)24(tan1x)(cot1x)


(tan1xcot1x)2=π242(3π28) (from(2),(3))


(tan1xcot1x)2=π24+3π24


(tan1xcot1x)2=π2


Taking square root,

tan1xcot1x=π .....(4)


On solving (1) and (4), we get


2tan1x=3π2


tan1x=3π4


x=tan(3π4)


x=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon