Let k=tan2α−tan2β−12sin(α−β)sec2αsec2β
=tan2α−tan2β−12[sinαcosβ−sinβcosαcos2αcos2β]
=2[sin2αcos2β−sin2βcos2α]2cos2αcos2β−[sinαcosβ−sinβcosα]2cos2αcos2β
=(sinαcosβ−sinβcosα)2cos2αcos2β[2sinαcosβ+2sinβcosα−1]
=sin(α−β)2cos2αcos2β[2(sin(α+β))−1]
If sin(α−β)=0, or sin(α+β)=12
,then k=0