(π16+7π16)=(2π16+6π16)=(3π16+5π16)=π2
Thus these are complementary.
and 4π16=π4. If we take θ=π16
L.H.S. = (tan2θ+cot2θ)+(tan22θ+cot22θ)+(tan23θ+cot23θ)+1
Now 1st bracket = (tan θ + cot θ)2 -2
=(1sin,θcosθ)2−2=(2sin2θ)−2
=81−cos4θ−2 where 4θ=4π16=π4
=8√2(√2−1)−2=8√2(√2,+1)−2.
2nd bracket = 81−cos8θ -2 = 8 - 2 = 6
3rd bracket = 81−cos12θ=8√2(√2−1)−2
and tan2π4 = 1
∴ S = 14 + 6 + 14 + 1 = 35.