The correct option is
B cot20∘tan20°+2tan50°
=tan20°+tan50°+tan50°
tan(A+B)=tanA+tanB1−tanAtanB
⇒tanA+tanB=tan(A+B)×(1−tanAtanB)
tan20°+tan50°+tan50°
=tan(50°+20°)(1−tan20°tan50°)+tan50°
=tan70°(1−tan20°cot20°)+tan50°
=tan70°(1−1)+tan50°
=tan50°=cot20°