wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate tan20°tan40°tan60°tan80°


A

1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

3

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

32

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

3


Explanation for correct option :

Evaluating the given trigonometric expression tan20°tan40°tan60°tan80°

Step-1 : Simplifying the above expression tan20°tan40°tan60°tan80°

tan20°×tan40°×tan60°×tan80°=sin20°cos20°×sin40°cos40°×sin80°cos80°×tan60°tanθ=sinθcosθ

Step-2 : Evaluating sin20°sin40°sin80°

Formula to be used: We know that 2sinAsinB=cosA-B-cosA+B and 2cosAsinB=sinA+B-sinA-B

sin20°sin40°sin80°=122sin20°sin40°sin80°.

=12cos20°-40°-cos20°+40°sin80°=12cos20°-cos60°sin80°cos-θ=cosθ=142cos20°sin80°-12×12sin80°cos60°=12=14sin20°+80°-sin20°-80°-14sin80°=14sin100°+sin60°-sin80°sin-θ=-sinθ=14sin100°-80°+32=142cos100°+80°2sin100°-80°2+32=142cos90°sin10°+32sinC-sinD=2cosC+D2sinC-D2=38cos90°=0

Step-3 : Evaluating cos20°cos40°cos80°

Formula to be used : We know that 2cosAcosB=cosA+B+cosA-B

cos20°cos40°cos80°=122cos20°cos40°cos80°

=12cos20°+40°+cos20°-40°cos80°=12cos60°+cos20°cos80°cos-θ=cosθ=12×12cos80°+142cos20°cos80°cos60°=12=14cos80°+14cos20°+80°+cos20°-80°=14cos80°+14cos100°+cos60°cos-θ=cosθ=14cos100°+cos80°+12cos60°=12=14cos100°+80°2cos100°-80°2+12=14cos90°cos10°+12=18cos90°=0

Step-4 : Calculating the value of the given expression tan20°tan40°tan60°tan80°

Using the values obtained in Step-2 and Step-3, we get :

tan20°×tan40°×tan60°×tan80°=sin20°cos20°×sin40°cos40°×sin80°cos80°×tan60°

=38183tan60°=3=3

Hence, the correct answer is option (C).


flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon