tan2A−tan2B=sin2A−sin2Bcos2A.cos2B
LHS = tan²A - tan²B
= sin2Acos2A - sin2Bcos2B
= sin2A.cos2B−sin2B.cos2Acos2A.cos2B
we know,
sin²x + cos²x = 1
So,cos²B = 1 - sin²B
cos²A = 1 - sin²A
Now substitute the value of cos²B and cos²A in the expression,
= sin2A(1−sin2B)−sin2B(1−sin2A)cos2A.cos2B
= sin2A−sin2A.sin2B−sin2B+sin2A.sin2Bcos2A.cos2B
= sin2A−sin2Bcos2A.cos2B = RHS