TakingLHS
Weknowthat
tan2x=2tanx1−tan2x
Replacingxwithtanx
tan(2∗2x)=2tan2x1−tan22x
tan(4x)=2tan2x1−tan22x
Usingtan2x=2tanx1−tan2x
tan4x=2(2tanx1−tan2x)1−(2tanx1−tan2x)2
=(4tanx1−tan2x)1−(4tan2x(1−tan2x)2)
=(4tanx1−tan2x)((1−tan2x)2−4tan2x(1−tan2x)2)
=4tanx1−tan2x∗(1−tan2x)2(1−tan2x)2−4tan2x
=4tanx1∗(1−tan2x)(1−tan2x)2−4tan2x
=4tanx(1−tan2x)(1−tan2x)2−4tan2x
Using(a−b)2=a2+b2−2ab
=4tanx(1−tan2x)((12)+(tan2x)2−2∗1∗tan2x)−4tan2x
=4tanx(1−tan2x)1+tan4x−2tan2x−4tan2x
=RHS
Henceproved