Let If put k=−12 given function.
Then,
tan690+tan660−tan690tan660=2k
⇒tan690+tan660−tan690tan660=2×(−12)
⇒tan690+tan660−tan690tan660=−1
⇒tan690+tan660=−1+tan690tan660
⇒tan690+tan6601−tan690tan660=−1
⇒tan(690+660)=−1
⇒tan1350=−1
⇒tan(1800−450)=−1
⇒−tan450=−1
⇒−1=−1
Hence proved.
Then k=−12 is the answer.
Option C is correct.