tan80°-tan10°tan70° is equal to:
0
1
2
3
Explanation for correct option:
Solving the given trigonometric expression:
The given expression is: tan80°-tan10°tan70°
We know that: 80°-10°=70°
Taking tan on both the sides, we get:
tan80°-10°=tan70°
Using the trigonometric identity tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) we get:
tan80°-tan(10°)1+tan(80°)tan(10°)=tan(70°)⇒tan80°-tan(10°)tan(70°)=1+tan(80°)tan(10°)⇒tan80°-tan(10°)tan(70°)=1+tan(80°)tan(90°-80°)⇒tan80°-tan(10°)tan(70°)=1+tan(80°)cot80°[∵tan(90°-a)=cot(a)]⇒tan80°-tan10°tan70°=1+1⇒tan80°-tan10°tan70°=2
Hence, the correct answer is option (C).
-41--51 is equal to