tan(81°)-tan(63°)-tan(27°)+tan(9°) equals
6
0
2
4
Explanation for correct option:
Evaluating the given expression:
tan(81°)-tan(63°)-tan(27°)+tan(9°)=tan(90°-9)+tan(9°)-tan(90°-27°)-tan(27°) =cot9°+tan(9°)-cot27°-tan(27°)[∵tan(90-θ)=cotθ]=cos(9°)sin(9°)+sin(9°)cos(9°)-cos(27°)sin(27°)+sin(27°)cos(27°)[∵cotθ=cosθsinθ]=cos2(9°)+sin29°sin(9°)cos(9°)-cos2(27°)+sin2(27°)sin(27°)cos(27°)=2sin(18°)-2sin(54°)[∵sin(2x)=2sinxcosx,cos2(θ)+sin2(θ)=1]
=2sin(54°)-sin(18°)sin(18°)sin(54°)=2(2cos(36°)sin(18°))cos(36°)sin(18°)[∵sinx-siny=2cos(a+b2)sin(a-b2)]=4
Hence, the correct answer is option (D).
equals