wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanA1-cotA+cotA1-tanA=1+tanA+cotA .


Open in App
Solution

Now by taking L.H.S

=tanA1-cotA+cotA1-tanA

=sinAcosA1-cosAsinA+cosAsinA1-sinAcosA

=sinAcosAsinA-cosAsinA+cosAsinAcosA-sinAcosA

=sinAcosA×sinAsinA-cosA+cosAsinA×cosAcosA-sinA

=sin2AcosA(sinA-cosA)+cos2AsinA(cosA-sinA)

=sin2AcosA(sinA-cosA)+cos2A-sinA(sinA-cosA)

=sin2AcosA(sinA-cosA)-cos2AsinA(sinA-cosA)

=sin3A-cos3AsinAcosA(sinA-cosA)

=sinA-cosAsin2A+sinAcosA+cos2AsinAcosA(sinA-cosA)

=sin2A+sinAcosA+cos2AsinAcosA

=sin2AsinAcosA+sinAcosAsinAcosA+cos2AsinAcosA

=sinAcosA+1+cosAsinA

=tanA+1+cotA

=1+tanA+cotA

=R.H.S

L.H.S=R.H.S

Hence proved


flag
Suggest Corrections
thumbs-up
256
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon