Prove that tanA1-cotA+cotA1-tanA=1+tanA+cotA .
Now by taking L.H.S
=tanA1-cotA+cotA1-tanA
=sinAcosA1-cosAsinA+cosAsinA1-sinAcosA
=sinAcosAsinA-cosAsinA+cosAsinAcosA-sinAcosA
=sinAcosA×sinAsinA-cosA+cosAsinA×cosAcosA-sinA
=sin2AcosA(sinA-cosA)+cos2AsinA(cosA-sinA)
=sin2AcosA(sinA-cosA)+cos2A-sinA(sinA-cosA)
=sin2AcosA(sinA-cosA)-cos2AsinA(sinA-cosA)
=sin3A-cos3AsinAcosA(sinA-cosA)
=sinA-cosAsin2A+sinAcosA+cos2AsinAcosA(sinA-cosA)
=sin2A+sinAcosA+cos2AsinAcosA
=sin2AsinAcosA+sinAcosAsinAcosA+cos2AsinAcosA
=sinAcosA+1+cosAsinA
=tanA+1+cotA
=1+tanA+cotA
=R.H.S
⇒L.H.S=R.H.S
Hence proved