The correct option is D cotα
cotθ−tanθ=1+tan2θtanθ=2(1−tan2θ2tanθ)=2cot2θ
Now
tanα+2tan2α+22tan22α+...2ntan2nα+2n+1cot2n−1α=−(cotα−tanα−2tan2α−22tan22α−...−2ntan22α)+2n+1cot2n+1α+cotα=−(2cot2α−2tan2α−22tan22α−...−2ntan22α)+2n+1cot2n+1α+cotα=−2n+1cot2n+1α+2n+1α+cotα=cotα