The correct option is C cotα
tanθ+2cot2θ=tanθ+2tan2θ=tanθ+2×1−tan2θ2tanθ=tanθ+2(1−tan2θ)2tanθ=2tan2θ+2−2tan2θ2tanθ=2tanθ=cotθ⇒tanθ+2cot2θ=cotθ ...(1)∴tanα+2tan2α+4tan4α+8cot8α=tanα+2tan2α+4[tan4α+2cot8α]=tanα+2tan2α+4cot4α ...[using (1)]=tanα+2[tan2α+2cot4α]=tanα+2cot2α ...[using (1)]=cotα ...[using (1)]