tanα=asinβ1−acosβGiven
⇒sinαcosα=asinβ1−acosβ
⇒sinα−acosβsinα=asinβcosα
⇒sinα=asin(β+α)(1)
Alsotanβ=bsinα1−bcosα
⇒sinβcosβ=bsinα1−bcosα
⇒sinβ−bcosαsinβ=bsinαcosβ
⇒sinβ=bsin(α+β)(2)
Lhs=sinαsinβ=asin(α+β)bsin(α+β)[by (1)&(2)]
=ab=Rhs
Hence proof