The correct option is D 1
α=tan−1(12)+tan−1(13)=tan−1⎛⎜
⎜
⎜⎝12+131−12×13⎞⎟
⎟
⎟⎠=tan−1(1)=π4β=cos−123+cos−1√53=cos−123+sin−123=π2γ=sin−1(sin2π3)+12cos−1(cos2π3)=sin−1(sin(π−π3))+12cos−1(cos2π3)=π3+12×2π3=2π3
Therefore,
tanα−tanβ2+√3tanγ4=tanπ4−tanπ4+√3tan2π3×4=1−1+√3tanπ6=√3×1√3=1