L.H.S
=tan(π4+12cos−1ab)+tan−1(π4−12cos−1ab) …… (1)
Let θ=12cos−1ab
cos2θ=ab ……. (2)
Therefore,
=tan(π4+θ)+tan−1(π4−θ)
=tanπ4+tanθ1−tanπ4tanθ+tanπ4−tanθ1+tanπ4tanθ
=1+tanθ1−tanθ+1−tanθ1+tanθ
=(1+tanθ)2+(1−tanθ)21−tan2θ
=1+tan2θ+2tanθ+1+tan2θ−2tanθ1−tan2θ
=2+2tan2θ1−tan2θ
=2(1+tan2θ)1−tan2θ
=2cos2θ
=2ab
=2ba
Hence, proved.