CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

tan(π4+12cos1ab)+tan(π412cos1ab)=2ba.

Open in App
Solution

L.H.S

=tan(π4+12cos1ab)+tan1(π412cos1ab) …… (1)

Let θ=12cos1ab

cos2θ=ab ……. (2)

Therefore,

=tan(π4+θ)+tan1(π4θ)

=tanπ4+tanθ1tanπ4tanθ+tanπ4tanθ1+tanπ4tanθ

=1+tanθ1tanθ+1tanθ1+tanθ

=(1+tanθ)2+(1tanθ)21tan2θ

=1+tan2θ+2tanθ+1+tan2θ2tanθ1tan2θ

=2+2tan2θ1tan2θ

=2(1+tan2θ)1tan2θ

=2cos2θ

=2ab

=2ba

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App