tan(sin−135+cot−132)
tan(sin−135+cot−132)⇒tan⎡⎢ ⎢⎣tan−135√1−(35)2+tan−123⎤⎥ ⎥⎦[∵ sin−1x=tan−1x√1−x2 and cot−1xy=tan−1yx]=tan[tan−134+tan−123]=tan[tan−1(34+23)1−34×23]=tan[tan−1171212][∵ tan−1x+tan−1y=tan−1(x+y1−xy)]=tan[tan−1176]=176