Evaluate tanπ4+θ-tanπ4-θ
2tan2θ
2cotθ
tan2θ
cot2θ
Explanation for the correct option:
Evaluating the given expression:
Given expression is tanπ4+θ-tanπ4-θ.
We know that tan(A+B)=tanA+tanB1-tanAtanB
Applying this identity, we get
tanπ4+θ-tanπ4-θ=tanπ4+tanθ1-tanπ4tanθ-tanπ4-tanθ1+tanπ4tanθ=1+tanθ1-tanθ-1-tanθ1+tanθ[∵tanπ4=1]=(1+tanθ)2-(1-tanθ)21-tan2(θ)=4tanθ1-tan2(θ)[∵(a+b)2–(a–b)2=4ab]=2(2tan(θ))1-tan2(θ)=2tan(2θ)[∵2tan(θ)1-tan2(θ)=tan(2θ)]
Hence, the solution is 2tan(2θ).
Therefore, option(A) is the correct answer.
If 4tanθ=3, evaluate 4sinθ-cosθ+14sinθ+cosθ-1
If 4tanθ=3, evaluate (4sinθ−cosθ+14sinθ+cosθ−1)