wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

tanydx+tanxdy=0

Open in App
Solution

    tan ydx+tan xdy=0
    dxtan x=dytan y
    Integrating both side,
    dxtan x=dytan y
    cot x dx=cot y dy ......(1)

    Now, using substitution -
    cot x dx=cos xsin xdx
    Say u=sinx.
    then,
    du=cosxdx


    Substitute du=cos x,u=sin x in above expression,

      cos xsin xdx=duu

    =ln |u|+ln C

    Substitute back u=sinx

      cot xdx=cos xsin xdx=ln |sin x|+ln C

      Similarly,
        cot y dy=cos ysin ydy=ln |sin y|+ln C
        Where C is constant.
        Substituting these value in expression (1), we get
        ln |sin x |+ln |sin y |=ln C
          ln |sin x×sin y|=ln C

          |sin x×sin y|=C
          Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon