2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
tan 2 θ1+tan ...
Question
tan
2
θ
(
1
+
tan
2
θ
)
+
cot
2
θ
(
1
+
cot
2
θ
)
=
1
Open in App
Solution
LHS=
tan
2
θ
(
1
+
tan
2
θ
)
+
cot
2
θ
(
1
+
cot
2
θ
)
=
tan
2
θ
sec
2
θ
+
cot
2
θ
cosec
2
θ
(
∵
sec
2
θ
−
tan
2
θ
=
1
and
cosec
2
θ
−
cot
2
θ
=
1
)
=
sin
2
θ
cos
2
θ
1
cos
2
θ
+
cos
2
θ
sin
2
θ
1
sin
2
θ
=sin
2
θ
+
cos
2
θ
=1
=RHS
Hence, LHS = RHS
Suggest Corrections
0
Similar questions
Q.
(
1
-
tan
2
θ
)
(
1
+
tan
2
θ
)
=
?
(a) (sin
2
θ − cos
2
θ)
(b) (cos
2
θ − sin
2
θ)
(c) (cot
2
θ − tan
2
θ)
(d) (tan
2
θ − cot
2
θ)
Q.
Prove the following trigonometric identities.
1
+
tan
2
θ
1
+
cot
2
θ
=
1
-
tan
θ
1
-
cot
θ
2
=
tan
2
θ