tan2A-sin2A=tan2AsinA2
To proof:
tan²A - sin²A = tan² A sin²A
from LHS,
tan²A -sin²A
= (sin²A / cos²A) - sin²A……[tan A=sin A/cos A]
= (sin²A - sin²Acos²A) / cos²A
= sin²A (1- cos²A) / cos² A [tan A = sinA / cos A]
= tan²A sin²A= RHS
.•. hence proved