Consider the above drawn figure:
OP=OQ (Radii of same circle)
Thus, ∠OPQ=∠OQP (Angle opposite to equal sides are equal)
In △OPQ, the sum of the angles is 1800 that is:
∠OPQ+∠OQP+∠POQ=1800
But ∠OPQ=∠OQP, therefore,
∠OPQ+∠OQP+∠POQ=1800⇒∠OPQ+∠OPQ+∠POQ=1800⇒2∠OPQ+∠POQ=1800⇒2∠OPQ=1800−∠POQ........(1)
We also know that
∠POQ+∠PAQ=1800⇒∠PAQ=1800−∠POQ........(2)
From equations 1 and 2, we get
2∠OPQ=∠PAQ
Hence, ∠PAQ=2∠OPQ.