Let a point P1 on y=x3 be (h,h3).
Tangent at P1 is y−h3=3h2(x−h), it meets y=x3 at P2.
∴x3−h3=3h2(x−h)
⇒(x−h)(x2+xh+h2)=3h2(x−h)[∵a3−b3=(a−b)(a2+ab+b2)]
⇒x2+xh+h2−3h2
⇒x2+xh−2h2=0
⇒(x−h)(x+2h)=0
∴x=−2h for P2 x=h is for point P1
∴P2 is (−2h,−8h3)
Again, tangent at P2 is y+8h3=3(2h)2(x+2h), it meets y=x3 at P3.
∴x3+8h3=12h2(x+2h)
⇒(x+2h)(x2−2xh+4h2)=12h2(x−h)[∵a3+b3=(a+b)(a2−ab+b2)]
⇒x2−2xh+4h2−12h2
⇒x2−2xh−8h2=0
⇒(x−4h)(x+2h)=0
∴x=4h for P3 x=−2h is for point P2
∴P3 is (4h,64h3)
Similarly, we get
x=−8h for P4........
Hence, the abscissa for P1,P2,P3,....... are h,−2h,4h,....... respectively, which are in G.P.. [Hence proved]
Now for △(P1P2P3)
ar(△(P1P2P3))=12∣∣
∣
∣∣hh31−2h−8h314h64h31∣∣
∣
∣∣
Again for △(P2P3P4)
ar(△(P2P3P4))=12∣∣
∣
∣∣−2h−8h314h64h31−8h−512h31∣∣
∣
∣∣=12(−2)(−8)∣∣
∣
∣∣hh31−2h−8h314h64h31∣∣
∣
∣∣
∴ar(△(P1P2P3))ar(△(P2P3P4))=12∣∣
∣
∣∣hh31−2h−8h314h64h31∣∣
∣
∣∣12(−2)(−8)∣∣
∣
∣∣hh31−2h−8h314h64h31∣∣
∣
∣∣
⇒ar(△(P1P2P3))ar(△(P2P3P4))=116