Let P(x1,y1) be a point on the curve x2y3=a5
⇒x2×3y2y′+2xy3=0
⇒dydx=−2y3x
Equation of tangent at (x1,y1) is
y−y1=−2y13x1(x−x1)
⇒3(y−y1)y1=−2(x−x1)x1
⇒2xx1+3yy1=5
Let A and B be the point of intersection on x and y axes.
Then, coordinates are A(5x12,0) B(0,5y13)
Now, PA=√(5x12−x1)2+(0−y1)2
⇒PA=√9x214+y21=√9x21+4y214
PB=√(0−x1)2+(y1−5y13)2
⇒PB=√x21+4y219=√9x21+4y219
So the ratio will be
PAPB=√94⇒32=mn
Hence, the value of 4m+2n=16