Tangent drawn from point (c,d) to the hyperbola x225−y216=1 make angles α and β with the x− axis. If tanαtanβ=1, then the value of c2−d2
Open in App
Solution
Any tangent to hyperbola is y=mx±√m2a2−b2 Since, its passes through (c,d) ∴d=mc±√a2m2−b2 ⇒(d−mc)2=a2m2−b2 ⇒(c2−a2)m2−2cdm+b2+d2=0 Product of roots m1m2=tanαtanβ⇒d2+b2c2−a2=1 ⇒d2+b2=c2−a2 ⇒c2−d2=a2+b2=25+16=41