Tangents AP and AQ are drawn to a circle, with centre O, from an exterior point A. Prove that :
∠PAQ=2∠OPQ
Let ∠OPQ=xNowweknowthat,∠OPA=90(Radiusisalwaysperpendiculartotangent)Hence,∠QPA=90−x∠QPA=∠PQA=90−x.(AP=AQtangentsfromsameexternalpts)Nowbyanglesumpropertyin∠APQ∠QPA+∠PQA+∠QAP=180Substitutingthevalues90−x+90−x+∠QAP=180∠QAP−2x=0∠QAP=2xOrwecansaythat,∠QAP=2∠OPQ