Tangents are drawn from any point on the circle x2+y2+2gx+2fy+c=0 to the circle x2+y2+2gx+2fy+csin2α+(g2+f2)cos2α=0,then the angle between the tangents
S1:x2+y2+2gx+2fy+c=0 and S2:x2+y2+2gx+2fy+csin2α+(g2+f2)cos2α=0
So, sinθ=r2r1=√(g2+f2−c)sin2α√g2+f2−c
sinθ=sinα
So, θ=α.
So, angle bet tangents is 2θ=2α