The correct option is D 2y2−1x2=1
y=sinx+cosx
⇒y=√2sin(x+π4)
dydx=√2cos(x+π4)
Given line passes through origin so it will be in form y=mx⇒m=yx
⇒dydx=y1x1=√2cos(x1+π4) where (x1,y1) is point on the curve
∴y21x21=2cos2(x1+π4)=2(−y212+1)
⇒Locus of (x1,y1) is 2y2−1x2=1