Let tangents are drawn from P(h,k) to circle x2+y2=a2 at point of contact of tangents be Q and R
Equation of chord of contact QR is
hx+ky=a2hx+ky−a2=0......(i)
Draw PS perpendicular to QR
PS=h2+k2−a2√h2+k2
length of tangent =PR=√S1
⇒PR=√h2+k2−a2
In △PSR , PS2+SR2=PR2
⇒SR2=PR2−PS2⇒SR2=(√h2+k2−a2)2−(h2+k2−a2√h2+k2)2⇒SR2=(h2+k2−a2){1−h2+k2−a2h2+k2}⇒SR2=(h2+k2−a2){h2+k2−h2−k2+a2h2+k2}⇒SR2=a2(h2+k2−a2)h2+k2⇒SR=a√h2+k2−a2√h2+k2
But QR=2SR
⇒QR=2a√h2+k2−a2√h2+k2
Area of △PQR=12×QR×PS
⇒Δ=12×2a√h2+k2−a2√h2+k2×h2+k2−a2√h2+k2
⇒Δ=a(h2+k2−a2)32h2+k2