The correct option is A (2,3√32),(4,0)
Let P(x1,y1) be the point of contact.
The equation of the tangent at P is xx116+yy19=1
If this tangent passes through (4,√3), then x14+y13√3=1⇒y13√3=1−x14⇒y1=12√3−3√3x14
P lies on the ellipse ⇒x2116+y219=1⇒x2116+(12√3−3√3x1)2144=1⇒x21+(4√3−√3x1)2=16
⇒x21+48+3x21−24x1=16⇒4x21−24x1+32=0⇒x21−6x1+8=0⇒x1=2or4
x1=2⇒y1=3√32,x1=4⇒y1=0
∴ The required points are (2,3√32),(4,0)