The correct options are
A (10, 0) C (−10√2, 0)We have:
S:x2+y2−50=0
Let co-ordinates of P be(x1,y1)=(p,0)
Equation of pair of tangents from (x1,y1)is:
SS1=T2
⇒(x2+y2−50)(x21+y21−50)
=(xx1+yy1−50)2
⇒(x2+y2−50)(p2+0−50)=(px−50)2
⇒(x2+y2−50)(p2−50)=(px−50)2
This pair of tangents meet y - axis at points
where x = 0
⇒(y2−50)(p2−50)=(0−50)2
⇒(y2−50)=2500p2−50
⇒y2=2500p2−50+50=2500+50p2−2500p2−50
⇒y2=50p2p2−50
⇒y±√50p2p2−50
=±√50p2−50|p|
Hence We have Q(0,√50p2−50|p|) and
R(0,−√50p2−50|p|)
Note that : Q and R are equidistant from
origin.
Using distance formula you will get QR as
QR=2|p|√50p2−50 which will be base of
triangle.
Height of triangle will be OP = |P|
⇒ Area =A=12×Base×Height
⇒A=12×2|p|√50p2−50×|p|
⇒A=|p|2√50p2−50
⇒A2=50p4p2−50
Differentiate with respect to p, we get:
2A.dAdp=200p2(p2−50)−50p4(2p)(p2−50)2
For maxims/ minima, dAdp=0
200p3(p2−50)−50p4(3p)(p2−50)2=0
⇒200p3(p2−50)−50p4(2p)=0
⇒50p3[4(p2−50)−2p2]=0
⇒4(p2−50)−2p2=0
⇒4p2−200−2p2=0
⇒2p2=200
⇒p2=100
⇒p=±10
[I leave checking double derivative for you.]
Hence coordinates of p are (10,0) or
(-10, 0) → Option (A,C)