f(x) is non-differentiable at 4x−1=0⟹x=14 which does not lie in [1,4].
Hence, f(x) is differentiable and continuous in given domain.
Also, f(a)=14−1=13 and f(b)=116−1=115
Now, consider f(b)−f(a)b−a=115−134−1
∴f(b)−f(a)b−a=−4153
∴f(b)−f(a)b−a=−445
Also, f′(x)=(−1)×1(4x−1)2×4=−4(4x−1)2
Now, according to Mean Value Theorem, there should be a c such that f′(c)=f(b)−f(a)b−a
∴−4(4c−1)2=−445
∴1(4c−1)2=145
∴(4c−1)2=45
∴c=1+√454
Now, √36=6 and √49=7.
∴1+√364≤1+√454≤1+√494
∴74≤1+√454≤84
∴74≤1+√454≤2
∴74≤c≤2
∴c∈(1,4)
Hence, the Mean Value Theorem is satisfied.