A point moves as so that the difference of its distances from (ae,0)and(-ae,0)is 2 a,Prove that the equation to its locus is x2a2−y2b2=1,where b2=a2(e2−1).
Let P(h,k)be any point on the locus and let A(ae,0) and B(-ae,0) be the given points.By the given conditionPA−PB=2a⇒PA=2a+PB⇒√(ae−h)2+(0−k)2=2a+√(−ae−h)2+(0−k)2⇒(√(ae−h)2+(k)2)2=(2a+√(ae−h)2+(k)2)2 [Taking square on both sides]⇒(ae)2+h2−2aeh+k2=4a2(ae+h)2+k2+2×2a×√(ae+h)2+k2⇒h2+k2+(ae)2−2aeh=4a2+(ae)2+h2+2hae+k2+4a√(ae+h)2+k2⇒−4a2−2aeh−2aeh=4a√(ae+h)2+k2⇒−4a2−4aeh=4a√(ae+h)2+k2⇒−4[a2+aeh]=4a√(ae+h)2+k2⇒−[a2+aeh]=a√(ae+h)2+k2⇒−a[a+eh]=a√(ae+h)2+k2⇒−[a+eh]=√(ae+h)2+k2⇒(a+eh)2=(√(ae+h)2+k2)2 [Taking square on both sides]⇒a2+(eh)2+2hae=(ae+h)2+k2⇒a2+(eh)2+2hae=(ae)2+h2+2hae+k2⇒a2+e2h2=a2e2+h2+k2⇒e2h2−h2−k2=a2e2−a2⇒h2(e2−1)−k2=a2(e2−1)⇒h2(e2−1)2(e2−1)−k2a2(e2−1)=1⇒h2a2−k2b2=1,where b2=a2(e2−1).∴The locus of (h,k) is x2a2−y2b2=1Hence proved.