A solution of the equation cos2θ+sin θ+1=0,lies in the interval
(5π/4, 7π/4)
Given:cos2θ+sin θ+1=0⇒(1−sin2 θ)+sinθ+1=0⇒1−sin2θ+sinθ+1=0⇒sin2θ−sinθ−2=0⇒sin2θ−2sinθ+sinθ−2=0⇒sinθ(sinθ−2)+1(sinθ−2)=0⇒(sinθ−2)(sinθ+1)=0⇒sinθ−2=0 or sinθ+1=0⇒sinθ=2 or sin θ=−1⇒sinθ=2 is not possible.⇒sinθ=−1∴sinθ=sin3π2⇒θ=nπ+(−1)n 3π2,n∈ZThe values of q lies in the third and fourth quadrants.Hence,θ lies in (5π4,7π4).