ABCD is a rectangle , if ∠BPC=124∘ Calculate : (i) ∠BAP (ii) ∠ADP
Diagonals of the rectangle are equal and bisect each other.
∴ ∠PBC=∠PCB=x (say) [∵ PB = PC]
But ∠BPC+∠PBC+∠PCB=180∘ [Angle sum property]
⇒124∘+x+x=180∘
⇒2x=180∘−124∘
⇒2x=56∘
⇒ x=28∘
∴ ∠PBC=28∘
But ∠PBC=∠ADP [Alternate interior angles ]
∴ ∠ADP=28∘
Again ∠APB=180∘−124∘=56∘
Also, PA=PB
∴ ∠BAP=12(180∘−∠APB)
=12×(180∘−56∘)=12×124∘=62∘
Hence (i) ∠BAP=62∘ (ii) ∠ADP=28∘