ABCD is a rhombus. if ∠BAC=38∘, find :(i) ∠ACB (ii) ∠DAC (iii) ∠ADC.
∵ ABCD is Rhombus (Given)∴ AB=BC∴ ∠BAC=∠ACB (∠ opp. to equal sides)But ∠BAC=38∘ (Given)∴ ∠ACB=38∘In Δ ABC,∠ABC+BAC+∠ACB=180∘ ∠ABC+38∘+38∘=180∘ ∠ABC=180∘−76∘=104∘But ∠ABC=∠ADC (oppl angles of hrombus)∴ ∠ADC=104∘∵ ∠DAC=∠DCA (∵ AD=CD)∴ ∠DAC=12[180∘=104∘] ∠DAC=12×76∘=38∘Hence (i) ∠ACB=38∘ (ii) ∠DAC=38∘(iii) ∠ADC=104∘