The correct option is A -1
X(s)=1s+2
H(s)=2(s+1)3
Y(s)=X(s).H(s)=2(s+1)3(s+2)
=As+1+B(s+1)2+C(s+1)3+Ds+2
C=2s+2|s=−1=22−1=2
B=dds[2s+2]|s=−1=22−1=−2
A=12!d2ds2[2(s+2)]|s=−1=2
Y(s)=2s+1−2(s+1)2+2(s+1)3+−2(s+2)
Y(t)=[2e−t−2te−t+t2e−t−2e−2t]u(t)
=[Pe−t+Qte−t+Rt2e−t+Se−2t]u(t)
⇒P=2, Q=−2, R=1, S=−2
⇒P+Q+R+S=2−2+1−2=−1