The correct option is C 3y(5y−7)
Given, the expression is
39y2(25y2−49)13y(5y+7).
Now, the numerator can be factorized as,
39y2(25y2−49)=39y2[(5y)2−(7)2]
Using the identity: a2−b2=(a+b)(a−b)
39y2[(5y)2−(7)2]
=3×13×y×y×[(5y+7)(5y−7)]
Therefore,
39y2(25y2−49)13y(5y+7)=3×13×y×y×(5y+7)(5y−7)13×y×(5y+7)
After canceling the common terms, we get,
39y2(25y2−49)13y(5y+7)=3×y×(5y−7)=3y(5y−7)