wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(x)=cosxcos2x. Find range .

Open in App
Solution

f(x)cosxcos2x

we know domain of f(x)willbe<x< and period of cosx=2π

Now f(x)=cosxcos2x

=f1(x)=sinx+2cosxsinx

For eritical pointf1(x)=0

sinx+2cosxsinx=0

sinx(2cosx1)=0

2cosx1=0sinx=0

cosx=12x=nπ(nϵz)

x=π3+3nπorπ3+2nπ(nϵz)

Now f1(x)=sinx+sin2x

f11(x)=cosx+2cos2x

f11(nπ)=cos(nπ)+2cos(2nπ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon