The correct option is C (m−4)(m+4)(m2+16)
Using the identity: a2−b2=(a+b)(a−b),
m4−256 = (m2)2−(16)2
Hence, the above expression can be written as,
(m2)2−(16)2=(m2+16)(m2−16)
=(m2+16)(m2−42)
[Using the identity: a2−b2=(a+b)(a−b)],
=(m2+16)(m+4)(m−4)
=(m−4)(m+4)(m2+16)