The correct option is A (p+q)(p+q+2r)
Given expression: p2+q2+2(pq+qr+rp)
The above expression can berewritten as, =(p2+q2+2pq)+2(qr+rp)
Now, applying the identity (a+b)2=a2+2ab+b2,we get p2+q2+2pq=(p+q)2
So,
(p2+q2+2pq)+2(qr+rp)
=(p+q)2+2r(p+q)=(p+q)(p+q)+2r(p+q)
Taking the common factor out, we get,=(p+q)(p+q+2r)