The correct option is A (4+m)(12−m)
Given:
48+8m−m2=−(m2−8m−48) ...(i)
Now, comparing the expression m2−8m−48 with the identity x2+(a+b)x+ab, we get,
(a+b)=−8 and ab=−48.
So, (−12)+4=−8 and (−12)(4)=−48
Therefore, from (i)
48+8m−m2=−(m2−8m−48)
=−[m2−12m+4m−48]
=−[m(m−12)+4(m−12)]
=−[(m+4)(m−12)]
=(m+4)(12−m)