wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find:cosx(1+sinx)(2+sinx)dx

Open in App
Solution

Let I=cosx(1+sinx)(2+sinx)dxPut sinx=tcosx dx=dtI=dt(1+t)(2+t)Now, let 1(1+t)(2+t)=A1+t+B2+t1(1+t)(2+t)=A(2+t)+B(1+t)(1+t)(2+t)=2A+B+(A+B)t(1+t)(2+t)

Comparing the numerator, we get
A+B=0 (1)2A+B=1 (2)
Solving (1) & (2), we get
A=1, B=1I=11+tdt12+tdtI=log|1+t|log|2+t|+CI=log1+t2+t+CI=log1+sinx2+sinx+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon