Let I=∫cosx(1+sinx)(2+sinx)dxPut sinx=t⇒cosx dx=dt⇒I=∫dt(1+t)(2+t)Now, let 1(1+t)(2+t)=A1+t+B2+t⇒1(1+t)(2+t)=A(2+t)+B(1+t)(1+t)(2+t)=2A+B+(A+B)t(1+t)(2+t)
Comparing the numerator, we get
A+B=0 ⋯(1)2A+B=1 ⋯(2)
Solving (1) & (2), we get
A=1, B=−1∴I=∫11+tdt−12+tdt⇒I=log|1+t|−log|2+t|+C⇒I=log∣∣∣1+t2+t∣∣∣+C⇒I=log∣∣∣1+sinx2+sinx∣∣∣+C