wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the centre,eccentricity,foci and directrices of the hyperbola(i) 16x29y2+32x+36y164=0(ii) x2y2+4x=0(iii) x23y22x=8

Open in App
Solution

(i) We have,16x29y2+32x+36y164=016x2+32x9y2+36y14=016(x2+2x)9(y2+4y)164=016[x2+2x+11]9[y24y+44]164=016[(x+1)21]9[(y9)24]164=016(x+1)2169(y2)2+36164=016(x+1)29(y2)2+20164=016(x+1)29(y2)2144=016(x+1)29(y2)2=144=016(x+1)21449(y2)2144=1(x+1)29(y2)216=1 ...(i)Shifting the origin at(-1,2)without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y,We havex=X1 and y=Y+2 ...(ii)Using these relations,equation (i)reduces tox29y216=1This is of the formX2a2Y2b2=1,where a =0and b=16 so,We have,Centre:The coordinates of the centre w.r.t the new nexes are (x=0,y=0)x=1and y=2[Using equation (ii)]So,the coordinates of the centre w.r.t the old axes are (-1,2).Eccentricity : The eccentricity e is given bye=1+b2a2=1+169=259=53Foci : The coordinates of the foci with respect to the new axes are given by(X=± ae,y=0,),ie.,(X=±5,Y=0)Putting X=±5 and Y=0 in equation(ii),we getx=±51 and y=0+2x=4,6 and y=2So,the co-ordinates of foci with respect to the old axes are given by (4,2)and (-6,2)Equation of the directix : The equations of the directrix areX=±ae=±353X=±95Putting X=±95 in equation (ii),we getx=±951Putting X=±95 in equation (ii),we getx=±951x=±955x=45 and x=145So,the equations of the directices w.r.t the old axes are5x4=0 and 5x+14=0(ii) x2y2+4x=0We have,x2y2+4x=0x2+4xy2=0x2+4x+44y2=0(x+2)2y2=4(x+2)24y24=1 ...(i)Shifting the origin at (-2,0) without rotating the axes and denoting the new co-ordinates w.r.t.these axis by x and y ,we havex=X 2 and y =Y ...(ii)Using these relations,equations~~~~(i)reduces to X24Y24=1This is of formX2a2Y2b2=1,where a2=4 and b2=4So, we haveCentre : The co-ordinates of the centre w.r.t. the new axes are(X=0,Y=0)Putting X=0 and Y=0 in equation(ii),We getx=2 and y=0So,the coordinates of the centre w.r.t.the old axes are (-2,0)Eccentricity : The eccentricity e is given by e=1+b2a2e=1+44=1+1=2Foci : The coordinates of the foci w.r.t.the new axes are (x=± ae,y=0)i.e.,(X=±22,Y=0)Putting X=0 and Y=0 in equation(ii),we getx=±22 2 and y=0x=2±2 2 and y=0So,The coordinates of the foci w.r.t.the new axes are(2±22,0)Directrices : The equations of the directices w.r.t.the new axes areX=±ae i.e.,x=±22Putting X=±22 in equation (ii),we getX=±22=2x+2=±2×22x+2=±2So,the equations of the directrices w.r.t to the old axes are x+2=±2.(iii) x23y22x=8We have,x23y22x=8x22x3y=8x22x+113y2=8(x1)213y2=8(x1)23y2=9(x1)203y29=1(x1)20y29=1 ...(i)Shifting the origin at (1,0) without rotating the axes and denoting the new co-ordinates w.r.t.these axis by x and y ,we havex=X +1 and y =Y ...(ii)Using these relations,equations(i)reduces toreduces to x29y29=1 ...(iii)This is of formx2a2y2b2=1,where a=9 and b2=3 so,we haveCentre : The co-ordinates of the centre w.r.t. the new axes are(X=0,Y=0)Putting X=0 and Y=0 in equation(ii),We getx=1 and y=0So,the coordinates of the centre w.r.t.the old axes are (1,0)Eccentricity : The eccentricity e is given by e=b2a2=1+39=13=43=23=2×33×3=233Foci : The coordinates of the foci w.r.t.the new axes are(x=± ae,y=0),i.e.,(x=±23,y=0)Puttingx=±23 and y=0 in equation(ii),we getx=±23+1 and y=0x=1±23 and y=0So,the coordinates of foci w.r.t.the old axes are (1±23,0)Directices : The equations of the directrices w.r.t the new axes are x=±aei.e,x=±3233=±23Putting x=±923+1x=±923


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon