Find the centre,eccentricity,foci and directrices of the hyperbola(i) 16x2−9y2+32x+36y−164=0(ii) x2−y2+4x=0(iii) x2−3y2−2x=8
(i) We have,16x2−9y2+32x+36y−164=0⇒16x2+32x−9y2+36y−14=0⇒16(x2+2x)−9(y2+4y)−164=0⇒16[x2+2x+1−1]−9[y2−4y+4−4]−164=0⇒16[(x+1)2−1]−9[(y−9)2−4]−164=0⇒16(x+1)2−16−9(y−2)2+36−164=0⇒16(x+1)2−9(y−2)2+20−164=0⇒16(x+1)2−9(y−2)2−144=0⇒16(x+1)2−9(y−2)2=144=0⇒16(x+1)2144−9(y2)2144=1⇒(x+1)29−(y2)216=1 ...(i)Shifting the origin at(-1,2)without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y,We havex=X−1 and y=Y+2 ...(ii)Using these relations,equation (i)reduces tox29−y216=1This is of the formX2a2−Y2b2=1,where a =0and b=16 so,We have,Centre:The coordinates of the centre w.r.t the new nexes are (x=0,y=0)∴x=−1and y=2[Using equation (ii)]So,the coordinates of the centre w.r.t the old axes are (-1,2).Eccentricity : The eccentricity e is given bye=√1+b2a2=√1+169=√259=53Foci : The coordinates of the foci with respect to the new axes are given by(X=± ae,y=0,),ie.,(X=±5,Y=0)Putting X=±5 and Y=0 in equation(ii),we getx=±5−1 and y=0+2x=4,−6 and y=2So,the co-ordinates of foci with respect to the old axes are given by (4,2)and (-6,2)Equation of the directix : The equations of the directrix areX=±ae=±353X=±95Putting X=±95 in equation (ii),we getx=±95−1Putting X=±95 in equation (ii),we getx=±95−1⇒x=±9−55⇒x=45 and x=−145So,the equations of the directices w.r.t the old axes are5x−4=0 and 5x+14=0(ii) x2−y2+4x=0We have,x2−y2+4x=0⇒x2+4x−y2=0⇒x2+4x+4−4−y2=0⇒(x+2)2−y2=4⇒(x+2)24−y24=1 ...(i)Shifting the origin at (-2,0) without rotating the axes and denoting the new co-ordinates w.r.t.these axis by x and y ,we havex=X −2 and y =Y ...(ii)Using these relations,equations~~~~(i)reduces to X24−Y24=1This is of formX2a2−Y2b2=1,where a2=4 and b2=4So, we haveCentre : The co-ordinates of the centre w.r.t. the new axes are(X=0,Y=0)Putting X=0 and Y=0 in equation(ii),We getx=−2 and y=0So,the coordinates of the centre w.r.t.the old axes are (-2,0)Eccentricity : The eccentricity e is given by e=√1+b2a2e=√1+44=√1+1=√2Foci : The coordinates of the foci w.r.t.the new axes are (x=± ae,y=0)i.e.,(X=±2√2,Y=0)Putting X=0 and Y=0 in equation(ii),we getx=±2√2 −2 and y=0x=−2±√2 −2 and y=0So,The coordinates of the foci w.r.t.the new axes are(−2±2√2,0)Directrices : The equations of the directices w.r.t.the new axes areX=±ae i.e.,x=±2√2Putting X=±2√2 in equation (ii),we getX=±2√2=−2⇒x+2=±√2×√2√2⇒x+2=±√2So,the equations of the directrices w.r.t to the old axes are x+2=±√2.(iii) x2−3y2−2x=8We have,x2−3y2−2x=8⇒x2−2x−3y=8⇒x2−2x+1−1−3y2=8⇒(x−1)2−1−3y2=8⇒(x−1)2−3y2=9⇒(x−1)20−3y29=1⇒(x−1)20−y29=1 ...(i)Shifting the origin at (1,0) without rotating the axes and denoting the new co-ordinates w.r.t.these axis by x and y ,we havex=X +1 and y =Y ...(ii)Using these relations,equations(i)reduces toreduces to x29−y29=1 ...(iii)This is of formx2a2−y2b2=1,where a=9 and b2=3 so,we haveCentre : The co-ordinates of the centre w.r.t. the new axes are(X=0,Y=0)Putting X=0 and Y=0 in equation(ii),We getx=1 and y=0So,the coordinates of the centre w.r.t.the old axes are (1,0)Eccentricity : The eccentricity e is given by e=√b2a2=√1+39=√13=√43=2√3=2×√3√3×√3=2√33Foci : The coordinates of the foci w.r.t.the new axes are(x=± ae,y=0),i.e.,(x=±2√3,y=0)Puttingx=±2√3 and y=0 in equation(ii),we getx=±2√3+1 and y=0⇒x=1±2√3 and y=0So,the coordinates of foci w.r.t.the old axes are (1±2√3,0)Directices : The equations of the directrices w.r.t the new axes are x=±aei.e,x=±32√33=±2√3Putting x=±92√3+1⇒x=±92√3